

Hot Forming

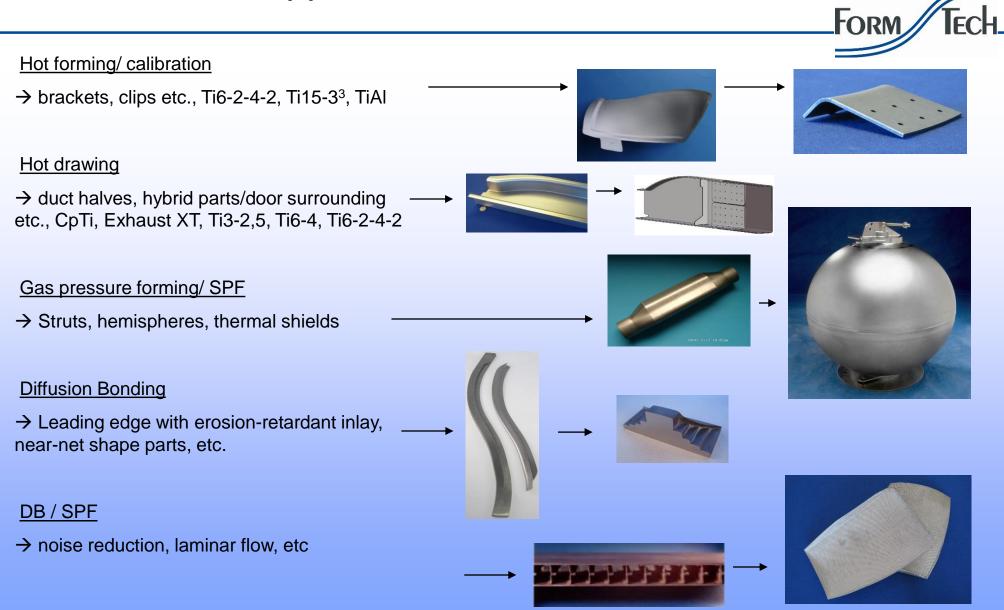
Diffusion Bonding

Hot forming of titanium

FormTech GmbH, Mittelwendung 26, D-28844 Weyhe, Germany Phone: +49 (0)4203 8045-0, Fax: +49(0)4203 8045-29, Email: info@formtech.de

- Key technology:
 - hot: Super Plastic Forming, Diffusion Bonding, combined SPF/DB, Hot forming, Hot drawing
 - cold: Deep drawing, Bending, etc.
- Branches:
 - Aircraft
 - Aerospace
 - Engines
 - Automotive
 - Medical
 - General Ind.

- References:
 - Rolls Royce
 - AIRBUS
 - AIRBUS D&S
 - Turbomeca
 - HEGGEMANN
 - PFW
 - MT Aerospace


- Products:
 - Production with small to big batch sizes
 - R & D, Bilateral, Partner in EC FP's, Feasibility, Prototyping
- Materials:
 - Magnesium, Aluminium, Titanium alloys e.g. Ti 6Al4V, Ti15-3-3-3, β 21 S, Ti-Al, etc, Steel e.g. 1.4462, Nickel alloys
- R & D Projects:

Our quality management system is monitored according to EN 9100 and according to the quality requirements of eaqg EASE rules and regulations approved.

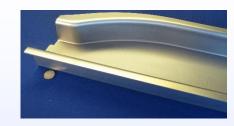
Processes and applications

The information contained herein is proprietary to FT and shall not be reproduced in whole or part or used for any purpose except when such user processes direct written authorisation from FT.

Hot forming, -calibration and - deep drawing

Hot forming offers important cost-reduction by material saving. \rightarrow Better buy-to-fly ratio Process cycle time reduction Titanium alloys are hot-formable at lower T > 650°C with less surface degradation

Hot forming of e.g. Mg-, Al- and Steel alloys possible as well


<u>Advantages</u>

- Near-net-shape parts with constant wall thickness
- ~ no residual stress
- ~ no distortion during trimming
- Cycle time much shorter as with SPF and mid to large strain
- Cost savings for big quantities

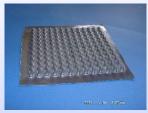
Ø 100 mm

Hot Gas Pressure Forming/ SPF

Hot process at ~750 to 900°C and controlled strain rate allow some x00% of strain Complex geometry. One-step operation Relatively simple tooling Forming is done with a shielding gas, e.g Ar for Titanium Parts are net-shape Just trimming and usually no further machining required

Advantages

- SPF and HGPF processes are good for complex shape with histrength alloys
- Initial wall thickness with very thin gauge, e.g. 0,1mm up to very thick gauge, e.g. >20mm possible
- No residual stress \rightarrow no spring back
- Relatively low tooling cost
- No final machining in 3D necessary

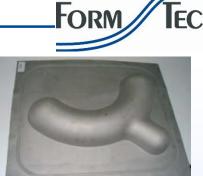


SPF/HGPF for complex shape with Hi-strength alloys

Typical SPF/ HGPF-Sample Geometries

Stützstange, Ti 6-4 t = 7 mm

Wave structure for heat exchanger 1.4462, 0,15 mm


ARIANE V Hemispheres Ti 6-4

Aircraft housing, Ti 6-4 and CRES

Fuel cell anode plate: 1.4462, 0,1mm

Bleed Air Duct Ti SP 700

Titanium	~Ti 6-4, BT6, BT6-S, Ti6-2-4-2, β 21 S, SP 700
	Ti 6-22-22, Ti15333, Ti-MMC, CpTi, etc
Ti-Al	~gamma TiAl, TMB
Nickel	~IN 718
Steel	~1.4462, Lean duplex, etc.
Aluminium	~AA 5083, 7475, etc.
Magnesium	~AZ 31, MA 2-1, etc.

Helicopter cover Ti 6-4

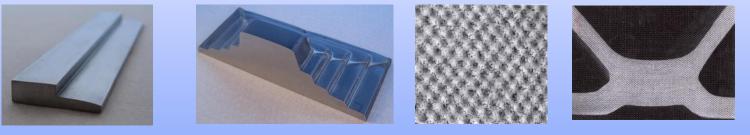
Functional duct. Steel or Titanium

Hemisphere Submarine, Ø =400mm, Ti6-4, $s_0 = 20mm$

Medical Implant Ti 6-4 ELI t = 0,2-0,4 mm

Racing car: Heat shield Ti6-4, S=1,0 mm; 600 mmx 450 mm

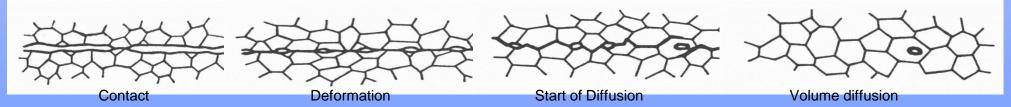
Diffusion Bonding (DB)

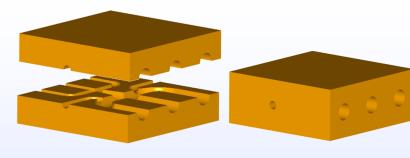

DB is an established process to join metallic materials in solid state with resulting base materials' strength and integrity

Single parts are pressed together under elevated temperature and the specified cycle time. The matching surfaces join by diffusion of solids DB is applicable both for Titanium, steel et al

<u>Advantage</u>

• Creation of complex channel structures, e.g. heat exchangers made from micro-etched foils or plate material


- DB joints may be: Point/ line/ large surface, thin/thick, dissimilar matls., Perforated sheets/ meshes
- Near-net-shape parts built-up from solid details for scrap reduction
- · Better efficiency and parts' functionality



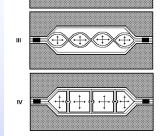
FORM

Vicro-heat exchanger made of single foils, t ~0,4mm

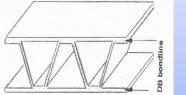
SPF/DB -Lightweight structures

SPF-DB parts are built from single sheets joined by DB and inflated by SPF SPF-DB parts offer lightweight, sandwich-like construction

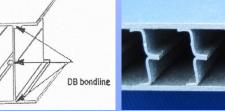
Advantages


- Weight reduction and performance optimisation
- Cost reduction

Applications


- Hollow fan blades, guide vanes etc.
- Integrally stiffened ducts
- Noise reduction
- Thermal insulation
- Laminar Flow Control

2 sheet design


3 sheet design

FORM

Thank you very much for your attention Vielen Dank für Ihre Aufmerksamkeit

FormTech GmbH Mittelwendung 26 D-28844 Weyhe Germany

Phone: Fax: Email: Homepage: +49-4203-8045-0 +49-4203-8045-29 info@formtech.de www.formtech.de